Konferenzbeiträge

Assessment of the Impact of Teledermatology using Discrete Event Simulation


Evolution of technology and the complexity of the medical system have contributed to the increasing interest in telemedicine. The purpose of this paper is to present a discrete event simulation model of the teledermatology process using the tool TelDerm. The logic of the simulation describes the telemedicine work flow from the detection of the problem to its resolution. The scenarios reflect different changes in the flow in order to quantify the impact of telemedicine on the healthcare system. Several key performance indicators measure medical and administrative workload variations for all human resources involved. In addition, we assess the impact on the patient’s journey through the process.

Study on the Operation Efficiency of Steel Stock Yard Using Descreet Event Simulation


A steel stock yard for storing the purchased steel plates is the first step of shipbuilding. It is also space where sorting is performed to supply proper steel plates to the cutting process at the right time. Usually, it is difficult to supply all steel plates from one steelwork. Therefore, the deviation of the duration of plate procurement increases in the process of supplying steel plates from multiple steelworks. The changes in production plans from this deviation affect the duration for which the steel plates stay in the stock yard.

To address this problem, shipbuilding yards are researching on efficient management of steel plates in a limited space. In this study, a steel stock yard simulation model was constructed using discrete event simulation.

STTAR: a Simheuristics-enabled Scheme for Multi-stakeholder Coordination of Aircraft Turnaround Operations


Aircraft ground handling involves all services to an aircraft (e.g. passenger boarding/disembarking, re-fuelling, deicing) between its arrival and immediately following departure. The aircraft, parked at its stand, witnesses a number of service providers move around it to perform their duties. Inter-dependencies among service providers abound, and knock-on effects at disrupted times are rife. Coordination from the side of the airport operator is difficult.

The research team proposes a tactical robust scheme by which ground handlers and the airport operator cooperate, although indirectly, in the development of plans for the next day that are less likely to be impacted by at least the more frequent operational disruptions. The scheme is based on a simheuristic approach which integrates ad-hoc heuristics with a hybrid simulation model (agent-based/discrete-event).

A Discrete Event Simulation Model to Test Multimodal Strategies for a Greener and More Resilient Wood Supply in Austria


Increasing occurrence of natural disturbances such as windstorms and high snow cover as well as uncer-tainty according to queuing and lead times, bottlenecks, utilization, stock level, wagon and truck availability and machine breakdowns lead to supply chain risks and seasonal irregularities in wood harvest and transport. Innovative multimodal systems via rail terminals offer the potential to increase buffer capacity and reduce greenhouse gas emissions. Therefore, a train terminal is included in a new virtual environment spanning the whole wood supply chain and enabling manager involvement in testing, analysis and evalua-tion of a complex multimodal transport system. The simulation model facilitates carrying out experiments and scenario designs for strategy comparisons in workshops with supply chain managers and provides in-tuitive decision support by animation and a KPI-cockpit. Adapting collaborative supply chain control strat-egies in participatory simulation enhances the development of advanced risk management and therefore improves supply chain resilience, efficiency and sustainability.

Open Pit Optimization for Short-term Forecasting Using Mining Simulator


Simulation modelling has long been used as a decision support tool in the mining industry. This is typically done to address issues on the strategic time horizon, with a heavy focus on experimentation and sensitivity analysis. These issues include mining equipment selection, pit optimization, design and operation of the mine-plant interface, testing the robustness of a mine plan and blending.

Mining simulators can be used to forecast production in the short term to test the quality of truck dispatch decisions (allocation of trucks to loaders) and evaluate the value of alternate scheduling rules. It can also be used to produce a forecast of the likelihood of achieving a shift target and allow operators to test what-if options to reduce the risk of production loss or reduce costs by putting excess equipment on standby. Being able to make these decisions with confidence helps to drive improvements in operations efficiency.

The Role of Simulation Optimization in Process Automation for Discrete Manufacturing Excellence


We discuss the application of simulation to estimate a nominal, or target, processing times for work stations on a serial assembly line. The expectation is that having different processing times per station per product will increase the throughput of the line, compared to having a constant time for all stations. A demonstration case at ABB Robotics in Sweden will be presented. This is a small part in the “Process Automation for Discrete Manufacturing Excellence” project (PADME) involving five manufacturing industry partners and four research organizations, that aim at adapting Industrie 4.0 strategies and existing state-of-the-art technologies into new configurations, serving as a framework that can be used by similar industries.

Flexibility as an Enabler for Carbon Dioxide Reduction in a Global Supply Chain: a Case Study From the Semiconductor Industry


Due to the significant rise in environmental awareness of companies and customers for the past few years, research on how to optimize business with respect to carbon dioxide (CO2) emission has gained more attention and importance. This paper investigates how flexibility can be an enabler for CO2 reduction over a global production network especially in a capital intensive and high volatile market like the semiconductor one. We tested this hypothesis with discrete-event simulation experiments based on a case study obtained from a semiconductor company. The study indicates that global supply chains (SCs), like those in the semiconductor industry, should be equipped with a certain level of flexibility to cope with demand volatility if the CO2 burden due to transportation is low compared to those due to manufacturing. This flexibility provides ecological benefits to companies in reducing the carbon footprint of their products.

Dynamic Price and Lead Time Quotation Under Semiconductor Industry Related Challenges


We consider the dynamic price and lead time quotation problem in the practical context of the semiconductor industry. Our model considers an inventory decoupled supply chain and accounts for a limited capacity, stochastic demand and processing times and quote-sensitive customers. We focus on performance evaluation under two decision making strategies. The first is lead time based pricing (LTBP). It follows a sequential approach where the firm decides first on the lead time quote (manufacturing) and then quotes the price under the given lead time (marketing). The second strategy suggests determining the lead time and the price quotes simultaneously. From the practical view-point, it is interesting to first understand the system performance under LTBP and then look for the ways to realize it. Based on our numerical results, we elaborate on the effect of LTBP on the key performance indicators and discuss conditions for close performance to a simultaneous decision strategy.

Simulation-based Evaluation of Urban Consolidation Centers Considering Urban Access Regulations


The negative effects of urban freight transports, such as air quality problems, road congestion, and noise emissions lead in many cities to major difficulties. A widely studied measure to reduce these negative effects are Urban Consolidation Centers (UCCs), which aim to bundle freight flows to reduce the number of urban freight transports. However, many projects showed that the additional costs of UCCs often made it unattractive for carriers to participate in such schemes. This paper presents an agent-based simulation to assess the impact of urban access regulations on the cost-attractiveness of UCCs for carriers. A case study inspired by the Frankfurt Rhine-Main area is presented to compare deliveries of a group of carriers with and without a Urban Consolidation Center under various urban access scenarios. The simulation shows that regulations increase the cost-attractiveness of UCCs for carriers to varying degrees while increasing the overall traffic volume.

A Simulation Model to Assess the Impact of Insurance Expansion on Colorectal Cancer Screening at the Population Level


Recent US healthcare reform debates have triggered substantial discussion on how best to improve access to insurance. Colorectal cancer (CRC) is an example of a largely preventable condition, if access to and use of healthcare is increased. Early and ongoing screening and intervention can identify and remove polyps before they become cancerous. We present the development of an individual-based discrete-event simulation model to estimate the impact of insurance expansion scenarios on CRC screening, incidence, mortality, and costs. A national repeated cross-sectional survey was used to estimate which individuals obtained insurance in North Carolina (NC) after the Affordable Care Act (ACA). The potential impact of expanding the state’s Medicaid program is tested and compared to no insurance reform and the ACA without Medicaid expansion. The model integrates a census-based synthetic population, national data, claims based statistical models, and a natural history module in which simulated polyps and cancer progress.