Demand and Supply Planning for a Large Fast Food Chain

Problem:

HAVI is a $5 billion global company and McDonald’s long-time supply chain and packaging partner. They provide services for supply chain management, packaging, logistics, recycling and waste. When McDonald’s wanted to build on the success of the All-Day Breakfast launch by expanding all-day availability to more menu items at 14,000 restaurants, they encountered a number of challenges (menu complexity, new equipment needs, space constraints).

1.jpg

McDonald’s business objective was to equip and staff its kitchens to obtain the best financial yield possible for the menu expansion. Working with HAVI, a simulation model was created that reflected the enormous complexity of the supply chain and operations across the 14,000 restaurants. The value of the model was to enable more informed decision making for equipment purchases and staffing.

Solution:

HAVI employs an iterative hypothesis-driven process for its simulation and analytics, balancing data with human experience.

Hypothesis-driven process

To meet McDonald’s requirements, the model considered:

Using AnyLogic, these requirements could be met and simulated, along with the spatial constraints and the wide variety of equipment and labor configurations. Decision variables of the simulation model included:

Layout of a modeling kitched

On the output side, it was vital to measure the customer experience. As a result, factors such as service time, product freshness, and waste, among other service metrics, were also included in the model.

Finally, according to the rigor of HAVI’s analytics process, the model was subject to validation and calibration, including trials in McDonald’s test kitchen. The resulting model captured the necessary metrics and provided simulation comparable to the real world. In short, the AnyLogic simulation assisted in the decision-making process, providing McDonald’s with the best financial yield for the desired menu expansion.

The power of agent-based modeling in AnyLogic allowed the nature of the system to be captured as it is in the real world. The characteristics and parameters of equipment, labor, and the environment they operate in, can be modeled as necessary and custom objects developed for re-use.

HAVI chose to use AnyLogic simulation due to its support for multiple modeling methods, with agent-based, discrete event, and system dynamics working together inside one system for the most holistic and powerful results.

Outcome:

The AnyLogic model delivered results for a variety of demand profiles and restaurant configurations. This enabled HAVI to provide tailored recommendations.

These recommendations covered equipment needs and cost estimates for meeting customer service level thresholds in various scenarios. The benefits of which produced proposed equipment cost avoidance and optimized cost tradeoffs for labor and equipment.

Without AnyLogic simulation modeling, time and cost constraints associated with exhaustive physical tests would have prevented tailored recommendations.

Project presentation by Nate DeJong, HAVI

Screenshot_1.jpg

Ähnliche Fallstudien

  • Analyse von Strategien des Ramp-Up-Managements im Flugzeugbau

    Die Airbus-Gruppe ist am EU-Projekt ARUM (Adaptive Production Management) beteiligt, dessen Fokus eine IT-Lösung für die Risikominderung, die Entscheidungsfindung und Planung während der Anlaufphase von neuen Produkten ist. Das Projekt ist hauptsächlich auf die Flugzeug- und Schiffsbauindustrie ausgerichtet. Die Simulation wurde als ein Teil der ARUM-Lösung gewählt, weil die Teilnehmer damit reale Erfahrungen einer Produktionsanlage reproduzieren können.
    Mehr lesen
  • Modellierung des Back-Office-Systems der Banca d'Italia

    Die Banca d'Italia wickelt jedes Jahr eine bestimmte Menge an manuellen Überweisungen ab. Diese Überweisungen können nicht automatisch verarbeitet werden und erfordern zwei Abteilungen mit Angestellten im Back-Office-Bereich der Bank. Die Bank wollte feststellen, ob es von Vorteil wäre, diese beiden Abteilungen zusammen zu legen.
    Mehr lesen
  • Improving Plane Maintenance Process with AnyLogic Agent-Based Modeling

    The military aircraft maintenance turnaround process (the in-between time when the aircraft touches down, is refueled, rearmed, and inspected, in order to be released) is complex and, being fairly time-consuming, includes multiple interactions and parallel workflows. Engineers from Lockheed Martin, one of the largest companies in the aerospace, defense, security, and technologies industry, used AnyLogic simulation modeling to improve decision making in the entire military airplane turnaround process and evaluate the impact of process changes on turnaround time.
    Mehr lesen
  • Construction Simulation Model Tackling Increased Constraints on a Complex Earthmoving Project

    “Anylogic’s flexible and easy to use environment enabled CCT’s simulation engineers to rapidly model the newly added constraints and deliver a valuable simulation model leading to a highly successful claim process,” affirms Ramzi Roy Labban, Manager, Construction Systems and Simulation at CCC.
    Mehr lesen
  • Business Processes Optimization Using Data Science and Simulation Modeling

    The world’s largest companies use data analytics to increase their revenue and keep up with the changing business world. But how does data science relate to simulation modeling, and what are the cases for the implementation of this interaction, primarily concerning value for the business? The United Services Automobile Association (USAA), a Fortune 500 group of companies, has answered these questions with real-life solutions.
    Mehr lesen
  • Outpatient Appointment Scheduling Using Discrete Event Simulation Modeling

    Indiana University Health Arnett Hospital, consisting of a full-service acute care hospital and a multispecialty clinic, faced poor statistics because the number of no-show patients (those who don’t show up for their scheduled appointments) rose dramatically to 30%. This was primarily connected to the fact that clinic schedules were driven by individual preferences of the medical staff, which led to increased variations in scheduling rules. To eliminate the problem, the client wanted to develop a scheduling methodology that would benefit the clinic, doctors, and patients.
    Mehr lesen
Mehr Fallstudien