Modeling the Cladding Leak Detection Shop of a Nuclear Reactor's Module

Customer:




Rosatom State Atomic Energy Corporation (Rosatom) is a state holding which incorporates more than 360 enterprises in the nuclear field. It includes all nondefense nuclear ventures, enterprises from the nuclear weapon sector, research organizations, and nuclear icebreaker fleets. Rosatom is a leading organization in the nuclear industry. It holds second position in world uranium stocks, fifth in mining, and fourth position in world nuclear energy production. It controls 17% of the world nuclear fuel market and 40% of the world market of enrichment services.


Model developers: Yuriy Podvalny, Denis Gerasimov.

Problem:




When designing the fuel cladding leak detection shop, developers needed to collect the data and system parameters in cases of ruptured fuel elements production.


The cladding leak detection shop is part of an automated line of fuel assembly production. Leak control is based on heating the fuel element groups. While warming up, defective units eject the control gas, which is detected by a leak locator. The defected group is divided into two parts. Each part is screened in the same way until the leaking fuel element is found.


System engineers needed to define the dependence between annual output (production), input storage volume, and fuel element group size, to charge into furnace or different spoilage rate. In addition, they needed to define the amount of dead fuel elements assemblies due to system downtime when input storage is full.

Solution:




Since leakage rate has a stochastic nature, developers built a simulation model of a cladding leak detection shop and tested different scenarios and system operation algorithms, running multiple experiments on the model.


The model, built in AnyLogic, simulates two algorithms of leak detection shop operation. The algorithms are based on different approaches for the detection of a leaking fuel element when the fuel element group is screened and leakage is detected.


First algorithm: when leakage is detected, half of the fuel elements group is uncharged from furnace #1 to furnace #2. Both groups are heated and examined for leaking fuel elements. The qualified group is charged to the output storage. The defective group is again divided into two groups and examined for the leaking fuel element, and so on.


Modeling Nuclear Fuel Production
Simulation Model Screenshot

If both groups appear to be defective, half of each group is charged to the output storage and the examination of the rest of the halves begins. The fuel elements groups in the output storage are inspected after examination of the first halves is completed. The input storage picks up incoming assemblies with scheduled frequency. Thus, the ruptured group is "uncoiled" by two furnaces. A new group of fuel elements is not charged until the ruptured element is found. In case leakage is not detected, the furnaces operate in course, with the second furnace waiting for the first one to complete the examination of the fuel elements group.


Second algorithm: the furnaces operate independently. The ruptured group is "uncoiled" by a furnace in isolation from another until the leaking element is found. A new group of fuel elements is not charged into the furnace until the previous group is completely examined. This approach allows two furnaces to operate simultaneously.


Model user can vary the following parameters of algorithms:

  • Leakage frequency
  • Size of fuel elements group to charge into the furnace for examination 
  • Input storage size

In the course of the research, every combination of value parameters was run on the model about 100 times for "one year" in terms of simulation model time.

Results:




  • Production rate of operation algorithms was tested for different leakage frequency cases.
  • The size of the fuel elements group to charge into a furnace was defined to provide the maximum production rate for the given leakage frequency.
  • Simulation brought out the possible loss reduction due to down time if the volume of input storage is increased.
  • Leak detector production stats were received for various leak frequencies and different parameters. Each time, the model was run for 100 "simulation" years.
  • Simulation spotted the dependence between maximum volume of input storage and the size of the fuel elements group to charge into the furnace. Numerical values were received to express this dependence for various leak frequency.

Conclusion:




At the stage of designing the fuel cladding leak detection shop, experiments with the real system required lots of financial and time expenses. Analysis of data collected during simulation allowed the engineers to define the optimal design parameters to provide maximum production.


The customer is planning to use the simulation model for testing possible changes in the production line, like adding a new furnace. Users can vary parameters by editing data in the model interface. The simulation model will serve as a decision support tool for the equipment buyer for many years.

More Case Studies

  • Planung und Optimierung einer hochautomatisierten Produktionslinie
    Centrotherm Photovoltaics AG ist ein weltweit agierender Anbieter von Technologien und Produktionslösungen für die Photovoltaik, Halbleiter und Mikroelektronikindustrie. Das Unternehmen musste die optimal automatisierte Produktionslinie und Werkskonfiguration finden, um Kosten zu minimieren und Durchsatzleistung und Ausfallsicherheit zu maximieren.
  • Simulation eines Tunnelbaus mit Hilfe einer Tunnelbohrmaschine
    Die Kosten des Ausfalls einer Tunnelbohrmaschine für eine Stunde sind üblicherweise hoch und Projektmanager müssen ihr Bestes tun, um unnötige Verzögerungen im Bau zu verhindern. Das Ziel des Simulationsprojektes, welches durch die Ruhr-Universität Bochum in Deutschland durchgeführt wurde, war es, ein Simulationsmodell zu entwickeln, das fähig ist die Engstellen im Tunnelbauprozess zu bestimmen, um finanzielle Verluste zu minimieren.
  • Analyse von Strategien des Ramp-Up-Managements im Flugzeugbau
    Die Airbus-Gruppe ist am EU-Projekt ARUM (Adaptive Production Management) beteiligt, dessen Fokus eine IT-Lösung für die Risikominderung, die Entscheidungsfindung und Planung während der Anlaufphase von neuen Produkten ist. Das Projekt ist hauptsächlich auf die Flugzeug- und Schiffsbauindustrie ausgerichtet. Die Simulation wurde als ein Teil der ARUM-Lösung gewählt, weil die Teilnehmer damit reale Erfahrungen einer Produktionsanlage reproduzieren können.
  • Der GE Produktionsbetrieb nutzt die Anylogic-Software für Unterscheidungsunterstützung in Echtzeit
    2012 eröffnete GE einen neuen Produktionsbetrieb für Batterien und startete gleichzeitig ein innovatives Geschäft im Bereich der Energiespeicherung. Das Global Research Center von GE suchte ein leistungsstarkes und flexibles Tool, um nicht nur den spezifischen Prozess, sondern das Produktionssystem im Gesamten zu analysieren.
  • Kapazitätsanalyse einer Schiffswerft
    Mit der AnyLogic Simulationssoftware als zentrales Element, benutzt NASSCO ein speziell angefertigtes Analysesytem, genannt das Large Scale Computer Simulation Modeling System for Shipbuilding (LSMSe), um hochdetaillierte und genaue Kapazitätsanalysen sowohl für die gegenwärtige Produktion als auch für neue Arbeiten zu erhalten.
  • Produktionsplanung in der Schiffsindustrie
    Die Manager einer der bedeutendsten italienischen Hersteller benötigten einen neuen, intelligenten Ansatz, um den Planungsprozess einfacher zu gestalten. Ziel war es, dem realen Produktionsplaner außergewöhnlich umfangreiche Planungsinformationen zu geben, mit denen dieser einen Plan vor seiner Umsetzung testen und verfeinern kann.
  • Eine Schiffswerft prüft ihre Kapazitäten der Auftragsabwicklung und gewinnt einen besseren Einblick in Produktionsstätte und Vertrieb
    Die Admiralitätsschiffswerft Admiralty Shipyards JSC steht vor einem großen Auftrag für Unterwasserboote mit Dieselantrieb und muss auswerten, ob die aktuelle Produktionsstätte den Auftrag ausführen kann, und falls nicht, welche Menge für das Jahr 2016 produziert werden kann. Admiralty Shipyards JSC sucht auch die Bestätigung, dass zur Durchführung des Auftrages keine zusätzliche Produktionsstätte erforderlich sein wird.
  • Simulation der Speiseeisproduktion: Einschränkungen erkennen und den Produktionsplan optimieren
    Conaprole, die größte Milchproduktionsfirma in Uruguay, produziert in ihrer Eiscremefabrik mehr als 150 Artikelpositionen und nutzt hierbei fünf Produktionslinien und bis zu fünf verschiedene Verpackungskonfigurationen für jede Linie. Die Herausforderung des Managements bestand darin, die Pläne neu anpassen zu können, damit Angebot und Nachfrage ausgeglichen sind, und um sicherzustellen, dass sie bei den Hauptprodukten Fehlmengen vermeiden.
  • Ein einfaches Simulationsmodell hilft Intel bei der Vermeidung von Werksstillständen
    Die Intel Werke hatten eine spezielle Geräteausstattung, die oft ausfiel und so Kapazitätsengpässe verursachte. Wenn das Gerät repariert werden konnte, wurde es von den Intel Werkstechnikern repariert oder, wenn das Problem zu komplex war, wurde es zum Reparaturzentrum des Herstellers geschickt. Diese sehr teuren Teile wurden bei wichtigen Werksarbeiten verwendet und die Reparaturen nahmen viel Zeit in Anspruch; deshalb mussten zusätzliche Ersatzteile vorhanden sein, um Ausfallzeiten zu vermeiden.
  • Improving Mining Outbound Logistics with Agent-Based Simulation Modeling
    One of the largest resource companies in the world, with over $80 billion in sales, decided to enter a new market. It was planning to build a new potash mine with 90% of the resources exported. They wanted to design a reliable supply chain, with a high speed of supply replenishing, and the ability to recover from natural disasters and man-made crises benefiting from such volatility. Amalgama and Goldratt companies contracted this project to design the potash mining operations and a full supply chain of outbound logistics.