AnyLogic Forum is moving to other platforms

This forum is now not officially supported and will be discontinued early in 2018. Registration and new topics are no longer possible.


To discuss AnyLogic-related issues, you are welcome to use LinkedIn user group and StackOverflow questions tagged with "anylogic".


Modeling and Optimization of Oil Production Using AnyLogic Fluid Library

Problem:




Canada is the third largest country to have oil reserves. However, most of the oil is in oil sand – the mixture of sand, oil and water – which has to be heated up with steam to emit the oil. Though operational costs for extraction of the substance are high, capital investments in this sphere reached $26 billion in 2014, which proved its prospects in the future.


To produce the oil from sand, a complex system of wells, pipes, steam generators, and other equipment is needed. It is costly to maintain such a distribution system, and outages may lead to disruptions in steam injection and oil production. To optimize expenditures and capture production lags, Stream Systems company applied AnyLogic simulation modeling. With previously employed spreadsheets, engineers could model the working process of 10-20 of wells. Simulation approach allowed them to model the production facility with hundreds of wells.


Solution:




The oil production process was presented with three major elements:

  • Central processing facility (CPF)
  • Reservoirs, which act as the source of the oil sand
  • Stand-alone wells and well pads (set of wells), extracting the oil

The simulation model consisted of smaller models of the system’s elements. This approach allowed engineers to monitor how the working process of a particular component might affect other elements.

Operational Planning Simulation


Oil Production Simulation Model

Because of the model’s complexity, AnyLogic multimethod approach (a mix of agent-based, system dynamic, and discrete event modeling) was applied. The system acted as a liquid carrier, and the lag in one component might lead to lags in other ones. AnyLogic fluid library was used to capture these lags, including in cases of emergency.


AnyLogic was seamlessly integrated with external data sources, which allowed modelers to use any types of files to input the data into the model. To manage additional calculations and make the model more realistic, external Java libraries were incorporated. The model’s input data included:

  • Operational data - infrastructure, layouts, configurations of system’s components, seasonality, etc.
  • Production profiles
  • Excel spreadsheets and text files

The model consisted of wells that acted as individual agents. Each well had a particular behavior and was connected with pipes and other flowchart components. It was easy to add and adjust components in the model if needed.


Apart from looking at specific parts of the model, one could also observe the production process, at a high level of perspective, to make operational and strategic plans. At both levels, it was possible to set parameters and run various experiments to perform the model’s optimization. Dashboards showed statistical data in order to visualize the changes in the system.


Output data accounted for:

  • Throughput of wells and pads
  • Steam-oil ratio
  • Steam, water, and oil production rate
  • Number of pads and wells per pad
  • Product quality

Decision Making Simulation Model


Outcome:




AnyLogic simulation modeling helped connect parts of the system, located above and below the ground. With the multimethod simulation modeling approach, it became possible to run multiple scenarios, including Monte Carlo and what-if experiments, and analyze variabilities in terms of scheduling and maintenance, providing the system’s optimization.


Fluid library helped represent each part of the model with high granularity, and display the ripple effect and breakages in the system. Moreover, it helped consider dynamic changes and their impact on the system. With this approach, it became possible to make real time decisions and capture the quality of the oil.


The model also contributed to decision making on future capital investments and reducing them, finding out when to replace or provide maintenance to the components of production process.


AnyLogic software was successfully implemented in the company’s other projects.

 

More Case Studies

  • Planung und Optimierung einer hochautomatisierten Produktionslinie
    Centrotherm Photovoltaics AG ist ein weltweit agierender Anbieter von Technologien und Produktionslösungen für die Photovoltaik, Halbleiter und Mikroelektronikindustrie. Das Unternehmen musste die optimal automatisierte Produktionslinie und Werkskonfiguration finden, um Kosten zu minimieren und Durchsatzleistung und Ausfallsicherheit zu maximieren.
  • Simulation eines Tunnelbaus mit Hilfe einer Tunnelbohrmaschine
    Die Kosten des Ausfalls einer Tunnelbohrmaschine für eine Stunde sind üblicherweise hoch und Projektmanager müssen ihr Bestes tun, um unnötige Verzögerungen im Bau zu verhindern. Das Ziel des Simulationsprojektes, welches durch die Ruhr-Universität Bochum in Deutschland durchgeführt wurde, war es, ein Simulationsmodell zu entwickeln, das fähig ist die Engstellen im Tunnelbauprozess zu bestimmen, um finanzielle Verluste zu minimieren.
  • Analyse von Strategien des Ramp-Up-Managements im Flugzeugbau
    Die Airbus-Gruppe ist am EU-Projekt ARUM (Adaptive Production Management) beteiligt, dessen Fokus eine IT-Lösung für die Risikominderung, die Entscheidungsfindung und Planung während der Anlaufphase von neuen Produkten ist. Das Projekt ist hauptsächlich auf die Flugzeug- und Schiffsbauindustrie ausgerichtet. Die Simulation wurde als ein Teil der ARUM-Lösung gewählt, weil die Teilnehmer damit reale Erfahrungen einer Produktionsanlage reproduzieren können.
  • Der GE Produktionsbetrieb nutzt die Anylogic-Software für Unterscheidungsunterstützung in Echtzeit
    2012 eröffnete GE einen neuen Produktionsbetrieb für Batterien und startete gleichzeitig ein innovatives Geschäft im Bereich der Energiespeicherung. Das Global Research Center von GE suchte ein leistungsstarkes und flexibles Tool, um nicht nur den spezifischen Prozess, sondern das Produktionssystem im Gesamten zu analysieren.
  • Kapazitätsanalyse einer Schiffswerft
    Mit der AnyLogic Simulationssoftware als zentrales Element, benutzt NASSCO ein speziell angefertigtes Analysesytem, genannt das Large Scale Computer Simulation Modeling System for Shipbuilding (LSMSe), um hochdetaillierte und genaue Kapazitätsanalysen sowohl für die gegenwärtige Produktion als auch für neue Arbeiten zu erhalten.
  • Produktionsplanung in der Schiffsindustrie
    Die Manager einer der bedeutendsten italienischen Hersteller benötigten einen neuen, intelligenten Ansatz, um den Planungsprozess einfacher zu gestalten. Ziel war es, dem realen Produktionsplaner außergewöhnlich umfangreiche Planungsinformationen zu geben, mit denen dieser einen Plan vor seiner Umsetzung testen und verfeinern kann.
  • Eine Schiffswerft prüft ihre Kapazitäten der Auftragsabwicklung und gewinnt einen besseren Einblick in Produktionsstätte und Vertrieb
    Die Admiralitätsschiffswerft Admiralty Shipyards JSC steht vor einem großen Auftrag für Unterwasserboote mit Dieselantrieb und muss auswerten, ob die aktuelle Produktionsstätte den Auftrag ausführen kann, und falls nicht, welche Menge für das Jahr 2016 produziert werden kann. Admiralty Shipyards JSC sucht auch die Bestätigung, dass zur Durchführung des Auftrages keine zusätzliche Produktionsstätte erforderlich sein wird.
  • Simulation der Speiseeisproduktion: Einschränkungen erkennen und den Produktionsplan optimieren
    Conaprole, die größte Milchproduktionsfirma in Uruguay, produziert in ihrer Eiscremefabrik mehr als 150 Artikelpositionen und nutzt hierbei fünf Produktionslinien und bis zu fünf verschiedene Verpackungskonfigurationen für jede Linie. Die Herausforderung des Managements bestand darin, die Pläne neu anpassen zu können, damit Angebot und Nachfrage ausgeglichen sind, und um sicherzustellen, dass sie bei den Hauptprodukten Fehlmengen vermeiden.
  • Ein einfaches Simulationsmodell hilft Intel bei der Vermeidung von Werksstillständen
    Die Intel Werke hatten eine spezielle Geräteausstattung, die oft ausfiel und so Kapazitätsengpässe verursachte. Wenn das Gerät repariert werden konnte, wurde es von den Intel Werkstechnikern repariert oder, wenn das Problem zu komplex war, wurde es zum Reparaturzentrum des Herstellers geschickt. Diese sehr teuren Teile wurden bei wichtigen Werksarbeiten verwendet und die Reparaturen nahmen viel Zeit in Anspruch; deshalb mussten zusätzliche Ersatzteile vorhanden sein, um Ausfallzeiten zu vermeiden.
  • Modeling the Cladding Leak Detection Shop of a Nuclear Reactor's Module
    The cladding leak detection shop is part of an automated line of fuel assembly production. Leak control is based on heating the fuel element groups. While warming up, defective units eject the control gas, which is detected by a leak locator. The defected group is divided into two parts. Each part is screened in the same way until the leaking fuel element is found.